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Abstract

This paper presents the Cross-Domain Solution Matcher (CDSM), a novel
multi-stage DSPy pipeline that leverages large language models to find anal-
ogous solutions from disparate domains. By abstracting problems to their
core challenges, mapping them to diverse fields, extracting domain-specific
solutions, and synthesizing actionable recommendations, CDSM enables cre-
ative problem-solving through cross-domain analogical reasoning. The system
demonstrates how structured prompting frameworks can orchestrate complex

reasoning tasks while maintaining interpretability and modularity.

TL;DR: CDSM is a 4-stage pipeline (analyze → map → extract →
synthesize) that solves problems by finding creative solutions from
completely different domains—like using immune system strategies to

reduce customer churn.
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Introduction
The ability to transfer solutions across domains represents one of the most powerful forms of
creative problem-solving. When biologists study ant colonies to optimize network routing,
or when engineers apply fluid dynamics to understand crowd movement, they engage
in analogical reasoning—recognizing structural similarities between superficially different
domains.

The Cross-Domain Solution Matcher automates this process by decomposing analogical
reasoning into discrete, optimizable stages. Rather than treating cross-domain thinking as
a monolithic task, CDSM breaks it into four fundamental operations: problem abstraction,
domain identification, solution extraction, and synthesis. Each stage builds upon the pre-
vious one, creating a pipeline where specialized reasoning modules collaborate to produce
novel insights.

Reasoning from First Principles

Core Principle: Problems that look different may share the same underlying
structure.

At its core, analogical reasoning rests on a simple premise. Consider these two scenarios:

1. A glacier flowing down a mountain
2. A queue of customers waiting at a service counter

On the surface, these share nothing. Yet both involve:
• Flow constrained by capacity
• Buildup when input exceeds output
• Dynamics influenced by environmental factors

By stripping away surface details to reveal structural essence, we can transport solutions
between domains. A fluid dynamics model for glaciers might inform queue management
strategies. This is not metaphor—it’s structural isomorphism.

CDSM operationalizes this principle through explicit abstraction: the first stage extracts
the “core challenge” independent of domain-specific details. This abstraction then serves as
a bridge, allowing the system to identify structurally similar problems in radically different
fields.

Architecture Overview
The Cross-Domain Solution Matcher consists of four sequential modules, each implemented
as a DSPy module using Chain-of-Thought reasoning. Table 1 summarizes the pipeline
structure.
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Stage Input Output Purpose
Analysis Problem description Core challenge, characteris-

tics
Abstract to essence

Mapping Core challenge 5-7 analogous domains Divergent search
Extraction Domain + challenge Solutions, strategies Transfer knowledge
Synthesis All solutions Patterns, recommendations Convergent integration

Table 1: Pipeline stage breakdown with inputs, outputs, and purposes

Stage 1: Problem Analyzer
Purpose: Extract the essence of the problem independent of its original domain.

Input: Raw problem description from the user

Output:
• Core challenge (the fundamental issue stripped of context)
• Key characteristics (structural properties of the problem)
• Desired outcome (what success looks like)

class ProblemAnalyzer(dspy.Module):
    def __init__(self):
        super().__init__()
        self.analyze = dspy.ChainOfThought(AnalyzeProblem)
    
    def forward(self, problem_description):
        return self.analyze(
            problem_description=problem_description
        )

Listing 1: Problem Analyzer implementation

The Problem Analyzer serves as the abstraction engine. By forcing the model to articulate
problems in domain-agnostic terms, we create a representation suitable for cross-domain
mapping.

Stage 2: Domain Mapper
Purpose: Identify analogous domains where structurally similar problems have been
solved.

Input: Core challenge and key characteristics from Stage 1

Output:
• List of 5-7 analogous domains
• Reasoning for each domain selection
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class DomainMapper(dspy.Module):
    def __init__(self):
        super().__init__()
        self.identify = dspy.ChainOfThought(IdentifyDomains)
    
    def forward(self, core_challenge, key_characteristics):
        return self.identify(
            core_challenge=core_challenge,
            key_characteristics=key_characteristics
        )

Listing 2: Domain Mapper implementation

The Domain Mapper performs divergent search across human knowledge. Given an abstract
problem structure, it seeks domains where similar patterns appear—often in unexpected
places. The diversity of domains selected directly influences solution creativity.

Stage 3: Solution Extractor
Purpose: For each identified domain, extract specific solutions and strategies.

Input: Original problem, core challenge, and target domain

Output (per domain):
• Domain-specific solution
• Mapping strategy (how the solution relates to the original problem)
• Implementation ideas (concrete steps to adapt the solution)

class SolutionExtractor(dspy.Module):
    def __init__(self):
        super().__init__()
        self.extract = dspy.ChainOfThought(ExtractSolution)
    
    def forward(self, original_problem, core_challenge, 
                target_domain):
        return self.extract(
            original_problem=original_problem,
            core_challenge=core_challenge,
            target_domain=target_domain
        )

Listing 3: Solution Extractor implementation

This stage performs the critical mapping operation—translating domain-specific knowledge
back to the original problem context. The Solution Extractor must maintain both fidelity
to domain expertise and relevance to the target problem.

Stage 4: Solution Synthesizer
Purpose: Integrate insights across all domains into coherent recommendations.

Input: Original problem and all domain solutions

Output:
• Common patterns across domains
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• Unique insights from specific domains
• Prioritized, actionable recommendations

class SolutionSynthesizer(dspy.Module):
    def __init__(self):
        super().__init__()
        self.synthesize = dspy.ChainOfThought(SynthesizeSolutions)
    
    def forward(self, original_problem, domain_solutions):
        return self.synthesize(
            original_problem=original_problem,
            domain_solutions=domain_solutions
        )

Listing 4: Solution Synthesizer implementation

The Synthesizer performs convergent integration, identifying meta-patterns that emerge
across multiple domains while preserving domain-specific insights that might be uniquely
valuable.

Pipeline Execution
The complete pipeline executes as shown in Listing 5:
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class CrossDomainSolutionMatcher(dspy.Module):
    def __init__(self, max_domains=5):
        super().__init__()
        self.max_domains = max_domains
        self.problem_analyzer = ProblemAnalyzer()
        self.domain_mapper = DomainMapper()
        self.solution_extractor = SolutionExtractor()
        self.solution_synthesizer = SolutionSynthesizer()
    
    def forward(self, problem_description):
        # Stage 1: Analyze the problem
        analysis = self.problem_analyzer(problem_description)
        
        # Stage 2: Map to analogous domains
        domain_mapping = self.domain_mapper(
            analysis.core_challenge,
            analysis.key_characteristics
        )
        
        # Stage 3: Extract solutions from each domain
        domain_solutions = []
        for domain in domain_mapping.analogous_domains[:self.max_domains]:
            solution = self.solution_extractor(
                problem_description,
                analysis.core_challenge,
                domain
            )
            domain_solutions.append(solution)
        
        # Stage 4: Synthesize all solutions
        synthesis = self.solution_synthesizer(
            problem_description,
            domain_solutions
        )
        
        return dspy.Prediction(
            problem=problem_description,
            core_challenge=analysis.core_challenge,
            domains=domain_mapping.analogous_domains,
            solutions=domain_solutions,
            synthesis=synthesis
        )

Listing 5: Complete pipeline implementation
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Design Principles

Chain-of-Thought for All Modules
Every module uses dspy.ChainOfThought rather than basic dspy.Predict. This decision
stems from empirical observation: analogical reasoning requires explicit intermediate steps.
By forcing the model to articulate its reasoning, we achieve:

1. Better Quality: Step-by-step reasoning catches logical gaps
2. Interpretability: Users can inspect how analogies were formed
3. Debuggability: Failures can be traced to specific reasoning steps

From First Principles: Complex tasks benefit from decomposition. Chain-of-
Thought operationalizes this decomposition at the prompting level.

Multi-Stage Pipeline Architecture
The four-stage design reflects the natural cognitive process of analogical reasoning:

1. Understanding what the problem really is (abstraction)
2. Recalling where similar problems exist (memory search)
3. Retrieving specific solutions (knowledge extraction)
4. Adapting solutions to the current context (transfer)

Each stage has a single, well-defined responsibility. This modularity enables:
• Independent optimization of each stage
• Easy replacement of individual components
• Clear debugging boundaries

TL;DR on Design: Each stage = one cognitive step; Chain-of-Thought = showing
your work; separation = easier to improve later.

Structured Input/Output Contracts
DSPy signatures define explicit contracts between stages:

class AnalyzeProblem(dspy.Signature):
    """Analyze a problem to identify its core essence."""
    
    problem_description = dspy.InputField()
    core_challenge = dspy.OutputField()
    key_characteristics = dspy.OutputField()
    desired_outcome = dspy.OutputField()

Listing 6: Example DSPy signature defining stage interface

These contracts serve multiple purposes:

1. Type Safety: Clear expectations for each stage
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2. Documentation: Self-documenting interfaces
3. Optimization: DSPy can optimize prompts while respecting contracts
4. Composability: Modules can be recombined if contracts match

High Token Budget
CDSM uses a 45,000 token context window. This generous allocation reflects a fundamental
trade-off: we prioritize solution quality over API cost. Each stage needs room for:

• Detailed reasoning chains
• Rich domain knowledge
• Multiple solution iterations
• Comprehensive synthesis

For production systems with cost constraints, token usage could be optimized through:
• Retrieval-augmented generation (fetch domain knowledge on-demand)
• Prompt compression techniques
• Selective Chain-of-Thought (only for difficult cases)
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Example: Customer Churn Reduction
Let’s trace a complete execution to illustrate the system’s behavior.

User Problem
“How do I reduce customer churn in my SaaS product?”

Stage 1: Problem Analysis
Core Challenge: Maintaining sustained engagement with voluntary participants over
time.

Key Characteristics:
• Voluntary participation (customers can leave anytime)
• Early-stage vulnerability (highest churn in first 90 days)
• Competing alternatives (numerous substitute products)
• Value perception gap (understanding vs. experiencing value)

Desired Outcome: Customers remain engaged long enough to reach “aha moments” and
build habits around the product.

Stage 2: Domain Mapping
Identified Domains:

Domain Relevance
Biological Immune Systems Maintaining defense against constant threats
Ecosystem Resilience Systems that persist despite perturbations
Social Network Dynamics Why people stay in communities
Addiction Psychology Mechanisms that create compulsive behavior
Jazz Improvisation Keeping audience engaged through unpredictability

Table 2: Analogous domains identified for customer churn problem

Stage 3: Solution Extraction
From Immune Systems:
• Domain Solution: Immune memory and rapid response to threats
• Mapping: Treat churn signals like pathogens—detect early, respond fast
• Implementation: Build an “early warning system” tracking engagement drops; have

automated re-engagement sequences ready

From Ecosystem Resilience:
• Domain Solution: Diversity and redundancy create stability
• Mapping: Single-feature dependence = fragility; multiple value streams = resilience
• Implementation: Ensure customers find value through multiple features; build redun-

dant pathways to success
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From Social Networks:
• Domain Solution: Strong weak ties—many shallow connections create network effects
• Mapping: Customer-to-customer connections reduce churn more than customer-to-

company connections
• Implementation: Facilitate user communities; enable collaboration features; showcase

user success stories

From Addiction Psychology:
• Domain Solution: Variable rewards on fixed schedules create habit loops
• Mapping: Predictable value delivery + unpredictable bonuses = engagement
• Implementation: Regular feature releases + surprise delighters; streak tracking;

unlockable achievements

From Jazz Improvisation:
• Domain Solution: Balance structure with surprise; actively respond to audience energy
• Mapping: Rigid product experiences feel stale; adaptive experiences feel personal
• Implementation: Personalization engines; A/B test with each user; respond to usage

patterns

Stage 4: Synthesis
Common Patterns:
1. Proactive monitoring — All domains emphasize early detection (immune response,

ecosystem sensing)
2. Relationship building — Whether neural connections or social ties, relationships

create stickiness
3. Adaptive responses — Rigid systems fail; flexible systems persist (jazz, ecosystems)

Unique Insights:
• Jazz improvisation suggests product should “listen” to user behavior and adapt in

real-time
• Immune systems suggest “memory” of past churn signals improves future predic-

tions

Prioritized Recommendations:

1. Build an early warning system (Immune Systems)
• Track engagement decay patterns
• Automate intervention triggers
• Personalize re-engagement messaging

2. Create variable reward structures (Addiction Psychology)
• Implement streak tracking
• Add surprise bonuses
• Use gamification judiciously

3. Foster user communities (Social Networks)
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• Enable peer connections
• Facilitate collaboration
• Showcase user success publicly
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Performance Characteristics
The system’s performance can be characterized by several key metrics, as shown in Table 3.

Metric Value
Latency 30-90 seconds per problem
API Calls 4 + N (where N = domains, typically 5-7)
Token Usage 15,000 + 5,000N tokens
Cost $0.30 - $1.20 per problem

Table 3: Performance characteristics of CDSM pipeline

Detailed Cost Analysis.

Token usage scales linearly with the number of domains:

tokens = 15000 + 5000𝑁 (1)

where 𝑁  represents the number of domains analyzed (typically 5-7).

The number of API calls follows a similar pattern:

calls = 4 + 𝑁 (2)

Cost estimation for Claude Sonnet 4.5 (at $3 per million input tokens and $15 per million
output tokens):

cost = input cost + output cost
≈ (15000 + 5000𝑁) × 3 × 10−6 + output tokens × 15 × 10−6

≈ $0.30 − $1.20 per problem
(3)

For context, this represents the price of 1-4 cups of coffee for potentially business-trans-
forming insights.
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Extensions and Future Work

Retrieval-Augmented Generation
Current implementation relies entirely on the model’s parametric knowledge. Adding
retrieval would enable:

• Access to domain-specific textbooks and papers
• Up-to-date information on emerging domains
• Deeper technical details for solution extraction

Parallel Solution Extraction
Stage 3 currently processes domains sequentially. Parallel extraction would reduce latency
by 𝑁  times while requiring coordination logic:

import asyncio

async def extract_parallel(domains):
    tasks = [
        self.solution_extractor(
            problem, challenge, domain
        ) 
        for domain in domains
    ]
    return await asyncio.gather(*tasks)

Listing 7: Parallel solution extraction implementation

This would modify Equation 2 to reflect concurrent execution, significantly reducing wall-
clock time.

Optimization with DSPy Compilers
DSPy supports automatic prompt optimization through techniques like:

• BootstrapFewShot: Generate training examples from the model itself
• MIPRO: Optimize prompts using labeled data
• Ensemble: Combine multiple prompting strategies

For production deployment, compiling the pipeline could improve both quality and effi-
ciency without changing the architecture described in Section 2.

Domain Specialization
Some domains (biology, physics, psychology) appear frequently in effective analogies.
Training domain-specific modules or maintaining domain knowledge bases could improve
solution depth.
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User Feedback Loop
Currently, CDSM produces recommendations without learning from outcomes. Adding
feedback mechanisms would enable:

• Rating solution quality
• Tracking implementation success
• Iterative refinement of domain selection heuristics
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Related Work
Analogical Reasoning Systems: Prior work in AI analogical reasoning (Gentner’s
Structure Mapping Engine, Hofstadter’s Copycat) focused on formal representation and
mapping. CDSM adopts a more pragmatic approach, leveraging LLM world knowledge
rather than building explicit domain models.

Problem Abstraction: The core challenge extraction parallels work in problem reformu-
lation and abstract planning. By treating abstraction as a prompted behavior rather than
a hardcoded algorithm, CDSM gains flexibility at the cost of formal guarantees.

Creative Ideation Tools: Systems like SCAMPER and TRIZ provide structured
frameworks for creative thinking. CDSM can be viewed as automating aspects of these
methodologies while adding LLM-powered domain knowledge.
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Conclusion
The Cross-Domain Solution Matcher demonstrates how large language models can be or-
chestrated to perform sophisticated cognitive tasks through careful architectural design. By
decomposing analogical reasoning into explicit stages (as detailed in Table 1), maintaining
clear interfaces between components (see Listing 6), and forcing step-by-step reasoning,
CDSM achieves both quality and interpretability.

The system’s true value lies not in replacing human creativity, but in augmenting it—
surfacing unexpected connections, providing domain expertise, and generating actionable
starting points. A designer using CDSM gains a thinking partner that can draw on diverse
knowledge to illuminate new solution paths.

From first principles, analogical reasoning succeeds when:
1. Problems are understood structurally rather than superficially
2. Domain knowledge is vast and varied
3. Mappings preserve relational structure
4. Synthesis identifies meta-patterns

CDSM operationalizes each principle through modular, optimizable components. As LLMs
continue to improve and DSPy’s optimization capabilities mature, systems like CDSM
represent a promising path toward AI-augmented problem solving.

Final TL;DR: CDSM breaks down “thinking across domains” into 4 clear steps, uses
Chain-of-Thought to show its work, and costs  $1 to potentially unlock million-dollar
insights. The future of creative AI isn’t about replacing humans—it’s about giving
them better thinking tools.

—
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